
Data Replication in Aircraft Components Database System using
Distributed Database System

Nann Thin Thin Nwe
University of Computer Studies, Yangon

nannthin88@gmail.com

Abstract

Data replication is a key technology in
distributed systems that enable higher availability
and performance. Data replication consists of
maintaining multiple copies of data, called replicas,
on separate computers. Optimistic replication
algorithms allow replica contents to become stale
but in a controlled way. Therefore, replication
becomes far more efficient and available than
traditional replication algorithms that keep all the
replicas consistent, especially when the network and
computers are unreliable. This system presents
optimistic replication for distributed aircraft parts
database by using Push based approach. This
system is not only improving the data availability
but also reduce the network latency at remote site
by replication process.

1. Introduction

Data replication consists of maintaining multiple
copies of data, called replicas, on separate
computers. It is an important enabling technology
for distributed services. Replication improves
availability by allowing access to the data even when
some of the replicas are unavailable. It also
improves performance through reduced latency, by
letting users access nearby replicas and avoiding
remote network access, and through increased
throughput, by letting multiple computers serve the
data simultaneously. In an interactive distributed
client-server system, each client views, updates,
and/or tracks changes made to a set of objects.

One widely used approach dealing with server
overload is the creation of replicas of the existing
object and the server. Conventional data
management systems are pull-based: queries or
transactions are executed only when they are
explicitly requested by a user or an application
program; i.e., transfer of data from servers to clients
is initiated by an explicit client pull. However in a
push-based system, updates are sent to clients not

when they request it. In an environment where
multiple users are interacting within a virtual world,
an update to the spatial location of an object has to
be transmitted to all the clients. In such a system,
any update to any object has to be sent to all other
clients interested in this particular object.

The organization of this paper is as follows:
Section 2 presents the related work of the system.
Theory background used in this system is described
in section 3 and section 4 illustrates about Push-
based algorithm. Section 5 discusses the proposed
system and Section 6 is the implementation of the
system. In section 7, conclusion of the system is
presented.

2. Related Work

In the distributed systems, it is advantageous to
place content as close to users as possible in order to
remove sources of network delay. There have been
several papers about data replication in traditional
database systems. In the pull-based approach,
pulling every time will incur large amount of
network traffic and vastly increase server load [5]. In
addition, the client response time includes an
additional round-trip delay even when the local copy
is the same as the server’s copy. Replication can be
quite effective at reducing network bandwidth
consumption as well as server load. The value of
replication is greatly reduced, however, if replicas
are not updated when the original data change. Data
consistency mechanisms ensure that replicated
copies of data are eventually updated to reflect
changes to the original data [7].

The optimal consistency protocol is precise
expiration. In precise expiration, servers set the
expiration time of each object to be the next
modification time. Consistency protocols other than
precise expiration use two mechanisms to meet
consistency guarantees. First is client initiated
approach, pulling (polling) and the other is server
initiated approach, pushing. In the polling approach,
client associates a time to live (TTL) or an

expiration time with each replicated object [8]. This
TTL can be regarded as a per-object lease to read the
object; in particular, it places an upper bound on the
time that each object may be cached before the client
revalidates the cached version. To revalidate an
object whose expiration time has passed, a client
sends a Get-if-modified-since request to the server,
and the server replies with “304 not modified” if the
cached version is still valid or with “200 OK” and
the new version if the object has changed. The
HTTP polling protocol has several limitations. Each
object is associated with an individual TTL. After a
set of TTLs expire, each object has to be revalidated
individually with the server to renew its TTL,
thereby increasing server load and read latency [9].

3. Theory Background

3.1. Distributed Database

A distributed database is a database that is under
the control of a central database management system
(DBMS) in which storage devices are not all
attached to a common CPU. It may be stored in
multiple computers located in the same physical
location, or may be dispersed over a network of
interconnected computers. Collections of data (e.g.,
in a database) can be distributed across multiple
physical locations. A distributed database can reside
on network servers on the Internet, on corporate
intranets or extranets, or on other company
networks. Replication and distribution of databases
improve database performance at end-user
worksites. [2]

Replication involves using specialized software
that looks for changes in the distributive database.
Once the changes have been identified, the
replication process makes all the databases look the
same. The replication process can be very complex
and time consuming depending on the size and
number of the distributive databases. This process
can also require a lot of time and computer
resources.

3.2. Replication

Replication is the process of sharing information
so as to ensure consistency between redundant
resources, to improve reliability, fault-tolerance, or
accessibility. It could be data replication if the same
data is stored on multiple storage devices, or
computation replication if the same computing task
is executed many times. The access to a replicated
entity is typically uniform with access to a single,

non-replicated entity. The replication itself should
be transparent to an external user.

3.3. Consistency

Consistency can be defined as maintaining the
same state of data in all replicas. It is the most
critical portion in the replication systems. There are
various approaches for maintaining consistency.
Consistency algorithms mainly based on who does
the replication and when the replication is
performed. And there is two main groups of
consistency algorithms, pessimistic and optimistic.
Pessimistic algorithm ensures the strong
consistency, but the implementation costs very
expensive and can fail because of locking.
Optimistic algorithm is a little bit weak in
consistency but it is cost effective and guarantee the
success of transactions. In the optimistic approach, it
can be further classified into –

 Client Initiated Approach
 Server Initiated Approach

3.4. Replication Algorithms

Replication algorithm is at the core of any
replicated service, responsible for reading and
updating replicas, or physical copies of an object. An
important design issue in replication is how replicas
are presented to users. Traditional pessimistic
replication algorithms offer single-copy semantics,
that is, they give users an illusion of having only a
single, highly available copy of an object by keeping
the replicas identical all the time. They are called
“pessimistic” algorithms, because they prohibit
accesses to a replica unless the replica contents are
provably up to date. Although these algorithms are
essential in a class of applications, such as banking,
that must give correct answers all the time at all
cost, they have one major drawback: stringent
hardware requirements. [1]

Optimistic replication algorithms allow data
presented to users to become stale but in a controlled
way. A key feature that separates optimistic
replication algorithms from pessimistic counterparts
is the way updates to objects are handled: whereas
pessimistic algorithms update all the replicas at once
and possibly block read requests from users during
the update application, optimistic algorithms
propagate updates in the background and allow any
replica to be read directly most of the time. This
feature makes optimistic algorithms more available
and more efficient using unreliable network media
and inexpensive computers.

3.5. Optimistic Replication

Optimistic replication is a group of techniques for
sharing data efficiently in distributed database
system. The key feature that separates optimistic
replication algorithms from their pessimistic
counterparts is their approach to concurrency
control. Pessimistic algorithms synchronously
coordinate replicas during accesses and block the
other users during an update. In contrast, optimistic
algorithms let data be read or written without a
priori synchronization, based on the “optimistic”
assumption that problems will occur only rarely, if at
all. Updates are propagated in the background, and
occasional conflicts are fixed after they happen.

4. Push based Algorithm

Whenever a master copy (for example, of data
A) gets updated at replica 1, an invalidation message
M is constructed and flooded into the network to
other replicas. Message M contains at least the
following information: the origin server ID (e.g., IP
address), the data record, and the new version
number of that data record. A replica receives M
will check if it caches data A, if yes, it compares the
local version number of A with that in the message,
and invalidates its local copy if the message contains
a newer version number. It passes on message M to
its neighbors no matter if it contains the specified
file, just like the way it deals with query. Process
sequence of push-based algorithm is shown in
Figure 1.

Figure 1: Process sequence of Push-based algorithm

5. Proposed System

This system presents the replication process to
improve data availability in Aircraft Components
Database System by implementing distributed
database system in different physical location. It
maintains the consistency of the distributed database
by replication process. Push based approach of
optimistic replication has been used to replicate
data. The process of push based has been as follows:

Whenever there has been an update in one replica,
the update has been sent to the server. Server issues
acknowledgement of the update to other replicas and
wait for the replies. If all other replicas agree the
update, the update has been committed (permanently
saved), otherwise rollback (cancel the update).

Proposed system design is shown in Figure 2,
where there is one Master database and one or more
replicas in remote areas. When one of the objects is
updated or added or deleted, the update information
is sent to server and server sends update information
to other replicas.

Figure 2: Proposed System Design

In this system, whenever, update request
(update, insert, delete) for an object, following
process will be performed. Replica (where update is
performed) updates local database temporarily. It
then sends the update information to Server
(Master). Server sends this information to other
replica for approval. Other replicas send back “OK”
if they agree to update, or “Cancel” if they do not
agree. If all other replicas send “OK”, Server sends
“COMMIT” to all replicas to permanently write in
the database and if at least one of them sends
“Cancel”, the update transaction is Cancelled. This
process is shown in following Figure 3.

Figure 3: Process Flow of the System

Write Request
(replica)

Local Update
(Temporal)

Sends Write to
Server

Server sends to
other replicas

Replicas reply
message

Commit
Transaction

Yes

Cancel
Transaction

No

If all replica
sends OK?

Master

Replica 1

Replica 3

Replica 2

Replica n

Update A

Message M

Ack (Yes / No)

Ack (Yes / No)

Message M

Message M

Ack (Yes / No) Save / Cancel

Save / Cancel

Save / Cancel

Save / Cancel

Update A

Replica 1 Server
(Master Copy)

Replica 2 Replica n

Update data

…

Update request

Message M

Invalidation message

Object ID
Server ID
Server Address
File Name
Update Data

Checks if there is object A
If yes, checks version of A
Invalidates its local copy
Passes Message M to server

Other Replicas

Sequence diagram for updating information in

one replica is shown in Figure 4.

Figure 4: Sequence Diagram for Updating data

6. System Implementation

This system is implemented using Java
programming language and jdk 1.6 is used to
implement the system. In this system, there is one
server component and three client components are
implemented. Yangon server is used as server
database, and three other components (Putao,
Mandalay and Myitkyinar) are used as client
machines. Even though aircraft database seems
small, there may be large volume of data in Parts.
Therefore it is necessary to replicate aircraft data for
fast retrieval. This system is implemented as
simulation process and tested in the local area
network system.

Each database has two types of database, database
that stores actual data and other database that stores
metadata (data about data). There will be one or
more clients in each site (both server and replicas)
and client access data at each site. Client can read or
write data in each site and all clients in all sites will
see the same data (in the consistent state). The
implementation of distributed database structure is
shown in Figure 5.

Figure 5: Implementation of Distributed Database

Table 1 shows the processing times for local and

remote (from server) data retrievals. According to
experimental results, processing time for requesting
data from local is far faster than requesting from
server. Therefore, replication assures the fast access
of data from local copy.

Table 1: Retrieval Times for different data sizes

No. No. of records Local (sec) Server (sec)
1. 100 1.2 2.7
2 200 2.5 3.7
3 300 3.1 4.5
4 400 3.7 5.7

7. Conclusion

This system presents the database replication
process in distributed database. Replication
improves the data availability and fault-tolerance. It
also reduces the network latency. This system is
implemented by using optimistic replication which
is used to avoid dead-lock problem that mostly found
in pessimistic replications and improve the system
performance. It also reduces the network costs. Push
based algorithm of optimistic replication is the
server initiated process, whenever there is an update,
server replicates it to all other replicas in the
optimistic way. According to the above facts,
optimistic replication is an appealing technique; it
improves networking flexibility and scalability.

References

[1] S. Acharya, M. J. Franklin and S. B. Zdonik,

“Balancing Push and Pull for Data Broadcast”, Procs.
of the ACM SIGMOD, May 1997.

[2] C. Bell, and R. Nishtala, "Firehose: An Algorithm for

Distributed Page Registration on Clusters of SMPs",
CS262B Final Project Computer Science Division,
University of California, Berkeley, May 2004.

[3] V. Cate, “Global File System”. Proceedings of the

1992 USENIX File System Workshop, May 1992,
pages 1-12.

[4] S. E. Chu, Kim, N. Jae and D. W. Kang, "RMI

Object Consistency Maintenance Techniques at
Distributed Computing".

[5] P. Deolasee, A. Katkar, K. Ramamritham and P.

Shenoy,“Adaptive Push-Pull: Disseminating Dynamic
Web Data: Complete Report, code, and traces”,
http://www.cse.iitb.ernet.in/˜krithi/dynamic.html.

Mandalay
Replica

Yangon
Server

Putao
Replica

Client
(Mdy)

Client writes data

Update local
database

Sends to
server

Commit or
rollback trans Message to client

Sends to other
replicas Check conflicts

and save if ok
Message to server

Write DB if
OK

Message to replica

 Replica Database

Aircraft
Data

Metadata

Mandalay Server

Replication Manager

 Replica Database

Aircraft
Data

Metadata

Putao Server

Replication Manager

 Master Database

Aircraft
Data

Metadata

Yangon Server
Replication Manager

Client Client

Client Access
Data (Read /

Client Client

Client Access
Data (Read /

Client Client

Client Access
Data (Read /

Replication
Process

Replication
Process

[6] V. Duvvuri, P. Shenoy and R. Tewari, “Adaptive

Leases: A Strong Consistency Mechanism for the
World Wide Web”, InfoCom, March 2000.

[7] C. Gray, and D. Cheriton, “Leases: An Efficient

Fault-Tolerant Mechanism for Distributed File Cache
Consistency”, Proceedings of the Twelfth ACM
Symposium on Operating System Principles, 1989,
pages 202-210.

[8] T. M. Kroeger, D. D. E. Long, and J. C. Mogul.

Exploring the Bounds of Web Latency Reduction
from Caching and Prefetching. Proc. of USITS'97,
13-22, 1997.

[9] J. Lan, "Cache Consistency Techniques for Peer-to-

Peer File Sharing Networks", MASTERS PROJECT
REPORT, June 26, 2002.

